首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   3篇
  国内免费   1篇
大气科学   1篇
地球物理   20篇
地质学   5篇
海洋学   5篇
天文学   21篇
自然地理   6篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2013年   7篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有58条查询结果,搜索用时 46 毫秒
31.
Effect of fault bend on the rupture propagation process of stick-slip   总被引:1,自引:0,他引:1  
An experimental study of stick-slip is performed to examine the effect of a fault bend on the dynamic rupture propagation process. A granite sample used in the experiment has a pre-cut fault that is artificially bent by an angle of 5.6° at the center of the fault along strike, and accordingly the fault consists of two fault segments. The rupture propagation process during stick-slip instability is investigated by analyzing the records of shear strain and relative displacement measured with strain gauge sensors together with the hypocenters of AE (acoustic emission) events detected with piezoelectric transducers. The observed rupture propagation process of typical stick-slip events is as follows. (1) The dynamic rupture started on a fault segment is stopped near the fault bend. (2) The rupture propagation is restarted near the bend on the other fault segment 10.8 ms to 3.5 s after the stop of the first rupture. The delay time of the second rupture decreases with an increase in the slip amount of the first rupture or a decrease in the normal stress acting on the fault segment where the second rupture started. (3) The restarted rupture is not arrested by the presence of a fault bend, and slip occurs over the entire fault. We theoretically analyze the stress concentration near the fault bend to find that the normal stress produced by the preceding slip near the fault bend plays an important part in controlling the rupture propagation. A numerical simulation based on a rate- and state-dependent friction law is performed to interpret physically the retarded rupture in the experiment. The observed time interval of 10.8 ms to 3.5 s between the first rupture and the second is explained by the numerical simulation, suggesting that the rate- and state-dependence of rock friction is a possible mechanism for the retarded rupture on the fault.  相似文献   
32.
Surface composition information from Vesta is reported using fast neutron data collected by the gamma ray and neutron detector on the Dawn spacecraft. After correcting for variations due to hydrogen, fast neutrons show a compositional dynamic range and spatial variability that is consistent with variations in average atomic mass from howardite, eucrite, and diogenite (HED) meteorites. These data provide additional compositional evidence that Vesta is the parent body to HED meteorites. A subset of fast neutron data having lower statistical precision show spatial variations that are consistent with a 400 ppm variability in hydrogen concentrations across Vesta and supports the idea that Vesta's hydrogen is due to long‐term delivery of carbonaceous chondrite material.  相似文献   
33.
NASA’s Dawn mission observed a great variety of colored terrains on asteroid (4) Vesta during its survey with the Framing Camera (FC). Here we present a detailed study of the orange material on Vesta, which was first observed in color ratio images obtained by the FC and presents a red spectral slope. The orange material deposits can be classified into three types: (a) diffuse ejecta deposited by recent medium-size impact craters (such as Oppia), (b) lobate patches with well-defined edges (nicknamed “pumpkin patches”), and (c) ejecta rays from fresh-looking impact craters. The location of the orange diffuse ejecta from Oppia corresponds to the olivine spot nicknamed “Leslie feature” first identified by Gaffey (Gaffey, M.J. [1997]. Icarus 127, 130–157) from ground-based spectral observations. The distribution of the orange material in the FC mosaic is concentrated on the equatorial region and almost exclusively outside the Rheasilvia basin. Our in-depth analysis of the composition of this material uses complementary observations from FC, the visible and infrared spectrometer (VIR), and the Gamma Ray and Neutron Detector (GRaND). Several possible options for the composition of the orange material are investigated including, cumulate eucrite layer exposed during impact, metal delivered by impactor, olivine–orthopyroxene mixture and impact melt. Based on our analysis, the orange material on Vesta is unlikely to be metal or olivine (originally proposed by Gaffey (Gaffey, M.J. [1997]. Icarus 127, 130–157)). Analysis of the elemental composition of Oppia ejecta blanket with GRaND suggests that its orange material has ∼25% cumulate eucrite component in a howarditic mixture, whereas two other craters with orange material in their ejecta, Octavia and Arruntia, show no sign of cumulate eucrites. Morphology and topography of the orange material in Oppia and Octavia ejecta and orange patches suggests an impact melt origin. A majority of the orange patches appear to be related to the formation of the Rheasilvia basin. Combining the interpretations from the topography, geomorphology, color and spectral parameters, and elemental abundances, the most probable analog for the orange material on Vesta is impact melt.  相似文献   
34.
35.
This study shows dependence of the surface diurnal tidal stress on the internal structure of Europa. Its purpose is to investigate possibility of cracking of the icy shell. The stress is evaluated under the plausible model of the internal structure constrained by the gravity field data. The possible effective stress at the sub-Jovian point decreases with thickening of the shell, while it does not depend on the core radius and the thickness of the H2O layer. The range of this value is from 0.095 to 0.161 MPa, which does not exceed the tensile strength of ice. The stress required for the surface cracking would be mainly due to longer period deformations, especially non-synchronous rotation. And/or the actual strength of the ice at the surface would be smaller because of the preexisting cracks than that at a laboratory of the same temperature.  相似文献   
36.
37.
38.
39.
General circulation models (GCMs) fitted with stable isotope schemes are widely used to interpret the isotope–climate relationship. However, previous studies have found that the spatiotemporal isotope/precipitation correlation simulated by GCMs is stronger and more widespread than the observed value. To understand the reason for this failure, we investigated the factors influencing the empirically well-known isotope/precipitation relationship, or precipitation amount effect, in the tropics using newly obtained daily precipitation isotope monitoring data over Asia. As in previous studies, we found an apparent correlation between the long-term monthly mean isotopic content and the corresponding precipitation amount (local precipitation) observed at sub-tropical island stations. Furthermore, on a monthly timescale, the isotopic variability of precipitation for these stations was more clearly related to the regional precipitation amount than to local precipitation. This correlation of isotopic content with the regional precipitation amount was observed at the equatorial (Maritime Continent) stations. For these stations, isotope/local precipitation relationships only appeared over longer timescales, with different regression line slopes at each station. However, at the coastal stations, there was a strong linear relationship between the monthly mean isotopic content and corresponding regional precipitation, and regression line slopes were spatially uniform. For the two sub-tropical terrestrial (Indochina Peninsula) stations, the isotopic minimum appeared without any relationship to rainfall amount but usually occurred at the leeward station during the rainy season. These results suggest that the isotopic variations of precipitation did not depend on the ’local’ rain-out history but on the rain-out process in the surrounding region. However, local rainfall events were associated not only with large-scale disturbances but also with regional circulation. Thus, the scale difference of controlling factors between local rainfall amount and isotopic value results in the weakening of the rainfall amount effect at the observation site and in the discrepancy between GCM simulations and observations. This finding suggests that regional precipitation–isotope relationships should be compared with GCM results. Additionally, because the isotope signal reflects the rain-out history at a regional scale, evaluation of the isotopic field using isotopic GCMs will be useful not only to reconstruct paleoclimate conditions but also to examine how GCMs can reproduce real atmospheric circulation over the tropics.  相似文献   
40.
We conducted hydrographic observations in 2002 to investigate the anticyclonic eddy that emerges every summer in Funka Bay, Hokkaido, Japan, and elucidate dynamical structure and wind-driven upwelling within the eddy. The anticyclonic eddy has a vertical scale of 32 m and is characterized by a strong baroclinic flow and a sharp pycnocline with a concave isopycnal structure. The sharp pycnocline occurs below a warm and relatively low-salinity water termed summer Funka Bay water (FS), which is formed by heating from solar radiation and dilution from river discharge in summertime Funka Bay. Flow of the anticyclonic eddy rotates as a rigid body at each layer, and the horizontal scale and rotation period of the eddy in the surface layer are about 15 km and 2.2 days, respectively. The dynamical balance of the anticyclonic eddy is well explained by the gradient flow balance. The contribution of centrifugal force to the gradient flow balance is about 27%. Therefore, the effect of the nonlinear term associated with centrifugal force cannot be neglected in considering the dynamics of the anticyclonic eddy in summertime Funka Bay. In addition, upwelling of subsurface water was observed in the surface layer of the central part of the eddy. The formation mechanism of this upwelling is consistent with interaction between horizontal uniform wind and the eddy. This upwelling is driven by upward Ekman pumping velocity related to the horizontal divergence of Ekman transport. In summertime Funka Bay, there are two wind effects that affect the anticyclonic eddy: a decay effect of the upwelling of subsurface water resulting from horizontal uniform wind (mainly northwesterly wind), and a maintenance or spin-up effect of horizontal non-uniform wind (mainly southerly–southeasterly seasonal wind) with negative wind stress curl.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号